Automatic Monitoring of Software Requirements

Don Cohen, Martin S. Feather, K. Narayanaswamy & Stephen S. Fickas
Computing Services Support Solutions
5777 West Century Blvd., Suite 1230
Los Angeles, CA 90045-5600 USA
http://www.compsvcs.com
tel: +1 213 299 3136
donc@compsvcs.com, feather@compsves.com, swamy@compsvces.com, fickas@cs.uoregon.edu

ABSTRACT

Automatic run-time monitoring of software systems’
design- / purchase- / installation- time requirements and
assumptions is a key step towards making those systems
more robust, maintainable, and self-evolving.

A concise language has been designed to permit the
convenient expression of a wide range of requirements and
assumptions. A compiler automatically converts these
expressions into run-time monitors to watch for, and
report, all requircment and assumption violations.

The mechanism is applicable to systems which have not
necessarily been designed with monitoring in mind,
permits addition of further requirements and assumption
monitoring on-the-fly, and emphasizes usability by a wide
range of end-users.

Keywords

Monitoring, requirements, assumptions, expectations,
maintenance, robustness, software evolution.
INTRODUCTION

It is common for the environment within which a software
system resides to evolve. Assumptions of both the
requircments that the system must fulfill, and the
operating conditions in which the system will operate, may
thus be rendered invalid over time. For example, the
creator of a system may make assumptions about the way
in which that system will typically be used, designing the
system accordingly; the installer of a system may make
assumptions about the computational resoutces that will be
available, configuring the installation of the system
accordingly. It is at run-time, however, that violations of
these assumptions become manifest through the symptoms
of frustrated users, squandered computational resources,

Permission to make digital/hard copies of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyright is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee

ICSE 97 Boston MA USA

Copyright 1997 ACM 0-89791-914-9/97/05 ..$3.50

602

and missed opportunities.

Software requirements monitoring extends the idea of
resource monitoring (e.g., as practiced by administrators of
computer networks) to the broader class of requirements
and assumptions made by the designers, purchasers,
installers and users of software systems.

The need for, and objectives of, requirements monitoring
have been suggested previously both by ourselves {2] and
others [3]. The latter group nicely identifies the approach
as bridging gaps between different classes of people (e.g.,
designers and users) and across different times (e.g.,
design time and use time). Our approach has been to
develop a system that, given expressions of requirements
and assumptions, compiles those into run-time monitors to
watch for, and generate notifications of, any violations.
This system 1is the focus of the accompanying
demonstration; its key characteristics are described here.

MONITORING DESIDERATA

Traditional programming languages and environments
provide limited support for monitoring. Through
constructs such as “assert” statements, “invariants”, etc.,
they permit the programmer of the system to encode
his/ber assumptions. This capability is laborious to use
(because the idioms of monitoring are not made
conveniently expressible in general-purpose programming
languages), and is restricted to monitoring queries that can
be anticipated at coding time.

Monitoring would be practiced in a much broader range of
circumstances if the following desiderata were met:

flexibility and convenience - a wide range of users’
requirements and assumptions should be readily
expressible

automatic compilation - these expressions of requirements
and assumptions should be compiled automatically
into reasonably efficient run-time monitoring code

applicable to “black-box™ systems - monitoring should be
applicable to systems which were not necessarily
designed with monitoring in mind

incremental - it should be possible to add monitoring
queries “on-the-fly”, as the monitored system
continues to operate.

AMOS - ASSUMPTIONS MONITORING SYSTEM

Our approach to meeting these desiderata is embodied in a

prototype monitoring system, AMOS. Its overall
architecture is sketched below:
Assumptions /
O O Requirements FLEA
\ , expressed 1n Compiler
FLEA
Notifications *
i
Monitored — MONITOR
System ~—r O O

.

Data Gathéring Mechanism

The user expresses his/her requirements and assumptions
for monitoring in FLEA, a Formal Language for
Expressing Assumptions. This small language provides a
set of composable constructs tailored for the convenient
expression of a wide range of monitoring concerns.
Bricfly, FLEA provides constructs for;

logical combination of events ¢.g., eventA OR eventB
sequences of events, €.g., cventA THEN eventB

counting and other simple statistical operations on events,
e.g., COUNT [occurrences of] eventA

parameterized events, €.g., eventA(x)

time sensitive events, e.g., eventA WITHIN 60 seconds of
eventB

threshold events, e.g., START count eventA > 10

Inspiration for FLEA’s constructs was drawn from several
sources, particularly GEM [5] and PPMS [4].

The FLEA compiler automatically converts FLEA
expressions into run-time monitoring code. The underlying
mechanism of the run-time monitor is that of APS [1], an
active database (i.e., a database with “triggers” that
examine cach transaction to determine if and when their
triggering conditions become true). The compiler takes
advantage of the powerful capabilities of this underlying
database, while shiclding the end-user from its
complexitics.

The run-time monitoring code uses one of several generic
data-gathering mechanisms to observe the interactions

between the system being monitored. and that system’s
environment. For example, one data-gathering mechanism

603

is founded upon a “message bus”, where interactions
between the monitored system and its environment take
the form of messages passed over a common
communication mechanism (“bus”). The monitor can be
configured to also observe these messages, and so have
access to the raw data from which to make its deductions
about the activities and state of the monitored system
without the need to have access to that system’s internals,

The AMOS system implementation operates as described
above. We are in the process of further enhancing its
usability by adding graphical user interfaces both for
entering assumptions to be monitored, and for displaying
notifications of assumption violations and other monitored
conditions.

ACKNOWLEDGMENTS

This work has been supported initially by the National
Science Foundation under award number: DMI-9560648,
and subsequently by the Defense Advanced Research
Projects Agency under award number: F 30602-96-C-
0270. Any opinions, findings, conclusions or
recommendations expressed in this publication are those of
the authors and do not necessarily reflect the views of the
NSF, DARPA, or the U.S. Government.

REFERENCES

1. Cohen, D. Compiling complex database transition
triggers in Proc. ACM SIGMOD International
Conference on the Management of Data (Portland, OR,
1989), ACM Press, 225-234.

2. Fickas, S. & Feather, M.S. Requirements Monitoring
in Dynamic Environments in Proc. of the Second IELE
International Symposium on Requirements
Engineering (York, England, UX., March 1995),
IEEE Computer Society Press, 140-147.

3. Girgensohn, Redmiles & Shipman Ageni-Based
Support for Communication between Developers and
Users in Software Design in Proc of the 9th
Knowledge-Based Software Engineering Conference
(Montercy, CA, September 1994), IEEE Computer
Socicty Press, 22-29.

4. Liao, Y. & Cohen, D. PMMS: A Framework and
System for High Level Program Monitoring and
Measuring in Proc. of IFIP Congress (Madrid, Spain,
1992).

5. Mansouri-Samani, M. & Sloman, M. GEM: A
Generalized Event Monitoring Language for
Distributed Systems. Imperial College of London,
Research Report No. DOC 95/8, August 1995.

